Robust active binocular vision through intrinsically motivated learning
نویسندگان
چکیده
The efficient coding hypothesis posits that sensory systems of animals strive to encode sensory signals efficiently by taking into account the redundancies in them. This principle has been very successful in explaining response properties of visual sensory neurons as adaptations to the statistics of natural images. Recently, we have begun to extend the efficient coding hypothesis to active perception through a form of intrinsically motivated learning: a sensory model learns an efficient code for the sensory signals while a reinforcement learner generates movements of the sense organs to improve the encoding of the signals. To this end, it receives an intrinsically generated reinforcement signal indicating how well the sensory model encodes the data. This approach has been tested in the context of binocular vison, leading to the autonomous development of disparity tuning and vergence control. Here we systematically investigate the robustness of the new approach in the context of a binocular vision system implemented on a robot. Robustness is an important aspect that reflects the ability of the system to deal with unmodeled disturbances or events, such as insults to the system that displace the stereo cameras. To demonstrate the robustness of our method and its ability to self-calibrate, we introduce various perturbations and test if and how the system recovers from them. We find that (1) the system can fully recover from a perturbation that can be compensated through the system's motor degrees of freedom, (2) performance degrades gracefully if the system cannot use its motor degrees of freedom to compensate for the perturbation, and (3) recovery from a perturbation is improved if both the sensory encoding and the behavior policy can adapt to the perturbation. Overall, this work demonstrates that our intrinsically motivated learning approach for efficient coding in active perception gives rise to a self-calibrating perceptual system of high robustness.
منابع مشابه
Let it Learn - A Curious Vision System for Autonomous Object Learning
We present a “curious” active vision system for a humanoid robot that autonomously explores its environment and learns object representations without any human assistance. Similar to an infant, who is intrinsically motivated to seek out new information, our system is endowed with an attention and learning mechanism designed to search for new information that has not been learned yet. Our method...
متن کامل2018-00413 - Post-doctoral - Unsupervised learning with deep nets for intrinsically motivated exploration of dynamical systems
The Flowers team studies computational mechanisms allowing robots and humans to acquire openended repertoires of skills through life-long learning. This includes the processes for progressively discovering their bodies and interaction with objects, tools and others. In particular, we study mechanisms of intrinsically motivated learning (also called curiosity-driven active learning), autonomous ...
متن کامل2018-00413 - Post-doctoral - Unsupervised learning with deep nets for intrinsically motivated exploration of dynamical systems
The Flowers team studies computational mechanisms allowing robots and humans to acquire openended repertoires of skills through life-long learning. This includes the processes for progressively discovering their bodies and interaction with objects, tools and others. In particular, we study mechanisms of intrinsically motivated learning (also called curiosity-driven active learning), autonomous ...
متن کاملFast Learning of Biomimetic Oculomotor Control with Nonparametric Regression Networks
Accurate oculomotor control is one of the essential pre-requisites of successful visuomotor coordination. Given the variable nonlinearities of the geometry of binocular vision as well as the possible nonlinearities of the oculomotor plant, it is desirable to accomplish accurate oculomotor control through learning approaches. In this paper, we investigate learning control for a biomimetic active...
متن کامل2018-00413 - Post-doctoral - Unsupervised learning with deep nets for intrinsically motivated exploration of dynamical systems
The Flowers team studies computational mechanisms allowing robots and humans to acquire openended repertoires of skills through life-long learning. This includes the processes for progressively discovering their bodies and interaction with objects, tools and others. In particular, we study mechanisms of intrinsically motivated learning (also called curiosity-driven active learning), autonomous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013